96 research outputs found

    Geometric integration of non-autonomous Hamiltonian problems

    Full text link
    Symplectic integration of autonomous Hamiltonian systems is a well-known field of study in geometric numerical integration, but for non-autonomous systems the situation is less clear, since symplectic structure requires an even number of dimensions. We show that one possible extension of symplectic methods in the autonomous setting to the non-autonomous setting is obtained by using canonical transformations. Many existing methods fit into this framework. We also perform experiments which indicate that for exponential integrators, the canonical and symmetric properties are important for good long time behaviour. In particular, the theoretical and numerical results support the well documented fact from the literature that exponential integrators for non-autonomous linear problems have superior accuracy compared to general ODE schemes.Comment: 20 pages, 3 figure

    Plane wave stability of some conservative schemes for the cubic Schr\"{o}dinger equation

    Get PDF
    The plane wave stability properties of the conservative schemes of Besse and Fei et al. for the cubic Schr\"{o}dinger equation are analysed. Although the two methods possess many of the same conservation properties, we show that their stability behaviour is very different. An energy preserving generalisation of the Fei method with improved stability is presented.Comment: 12 pages, 6 figure

    Adaptive Energy Preserving Methods for Partial Differential Equations

    Full text link
    A method for constructing first integral preserving numerical schemes for time-dependent partial differential equations on non-uniform grids is presented. The method can be used with both finite difference and partition of unity approaches, thereby also including finite element approaches. The schemes are then extended to accommodate rr-, hh- and pp-adaptivity. The method is applied to the Korteweg-de Vries equation and the Sine-Gordon equation and results from numerical experiments are presented.Comment: 27 pages; some changes to notation and figure

    Dissipative numerical schemes on Riemannian manifolds with applications to gradient flows

    Full text link
    This paper concerns an extension of discrete gradient methods to finite-dimensional Riemannian manifolds termed discrete Riemannian gradients, and their application to dissipative ordinary differential equations. This includes Riemannian gradient flow systems which occur naturally in optimization problems. The Itoh--Abe discrete gradient is formulated and applied to gradient systems, yielding a derivative-free optimization algorithm. The algorithm is tested on two eigenvalue problems and two problems from manifold valued imaging: InSAR denoising and DTI denoising.Comment: Post-revision version. To appear in SIAM Journal on Scientific Computin
    • …
    corecore